Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 520
Filtrar
1.
Genome Biol Evol ; 16(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38608148

RESUMEN

Nucleotide diversity at a site is influenced by the relative strengths of neutral and selective population genetic processes. Therefore, attempts to estimate Effective population size based on the diversity of synonymous sites demand a better understanding of their selective constraints. The nucleotide diversity of a gene was previously found to correlate with its length. In this work, I measure nucleotide diversity at synonymous sites and uncover a pattern of low diversity towards the translation initiation site of a gene. The degree of reduction in diversity at the translation initiation site and the length of this region of reduced diversity can be quantified as "Effect Size" and "Effect Length" respectively, using parameters of an asymptotic regression model. Estimates of Effect Length across bacteria covaried with recombination rates as well as with a multitude of translation-associated traits such as the avoidance of mRNA secondary structure around translation initiation site, the number of rRNAs, and relative codon usage of ribosomal genes. Evolutionary simulations under purifying selection reproduce the observed patterns and diversity-length correlation and highlight that selective constraints on the 5'-region of a gene may be more extensive than previously believed. These results have implications for the estimation of effective population size, and relative mutation rates, and for genome scans of genes under positive selection based on "silent-site" diversity.


Asunto(s)
Evolución Molecular , Variación Genética , Selección Genética , Modelos Genéticos , Nucleótidos/genética , Uso de Codones , Iniciación de la Cadena Peptídica Traduccional
2.
J Dairy Sci ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38608951

RESUMEN

In recent years, Genomic Selection (GS) has accelerated genetic gain in dairy cattle breeds worldwide. Despite the evident genetic progress, several dairy populations have also encountered challenges such as heightened inbreeding rates and reduced effective population sizes. The challenge has been to find a balance between achieving substantial genetic gain while managing genetic diversity within the population, thereby mitigating the negative effects of inbreeding depression. This study aims to elucidate the impact of GS on pedigree and genomic rates of inbreeding (ΔF) and coancestry (ΔC) in Nordic Jersey (NJ) and Holstein (NH) cattle populations. Furthermore, key genetic metrics including the generation interval (L), effective population size (Ne), and future effective population size (FNe) were assessed between 2 time periods, before and after GS, and across distinct animal cohorts in both breeds: females, bulls, and approved semen-producing bulls (AI-sires). Analysis of ΔF and ΔC revealed distinct trends across the studied periods and animal groups. Notably, there was a consistent increase in yearly ΔF for most animal groups in both breeds. An exception was observed in NH AI-sires, which demonstrated a slight decrease in yearly ΔF. Moreover, NJ displayed minimal changes in yearly ΔC between the periods, whereas NH exhibited elevated ΔC values across all animal groups. Particularly striking was the substantial increase in yearly ΔC within the NH female population, surging from 0.02% to 0.39% between the periods. Implementation of GS resulted in a reduction of the generation interval across all animal cohorts in both NJ and NH breeds. However, the extent of reduction was more pronounced in males compared with females. This reduction in generation interval influenced generational changes in ΔF and ΔC. Bulls and AI-sires of both breeds exhibited reduced generational ΔF between periods, in contrast to females that demonstrated an opposing pattern. Between the periods, NJ maintained a relatively stable Ne, 29.4 before and 30.3 after GS, while NH experienced a notable decline from 54.3 to 42.8. Female groups in both breeds displayed a negative Ne trend, while males demonstrated either neutral or positive Ne developments. Regarding FNe, NJ exhibited positive FNe development with an increase from 40.7 to 57.2. The opposite was observed in NH, where FNe decreased from 198.8 to 42.7. In summary, it was evident that the genomic methods could detect differences between the populations and changes in ΔF and ΔC more efficiently than pedigree methods. GS implementation yielded positive outcomes within the NJ population regarding the rate of coancestry but the opposite was observed with NH. Moreover, analysis of ΔC data hints at the potential to decrease future ΔF through informed mating strategies. Conversely, NH faces more pressing concerns, even though ΔF remains comparatively modest in contrast to what has been observed in other Holstein populations. These findings underscore the necessity of genomic control of inbreeding and coancestry with strategic changes in the Nordic breeding schemes for dairy to ensure long-term sustainability in the forthcoming years.

3.
Mol Ecol ; : e17353, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613250

RESUMEN

Effective population size (Ne) is a particularly useful metric for conservation as it affects genetic drift, inbreeding and adaptive potential within populations. Current guidelines recommend a minimum Ne of 50 and 500 to avoid short-term inbreeding and to preserve long-term adaptive potential respectively. However, the extent to which wild populations reach these thresholds globally has not been investigated, nor has the relationship between Ne and human activities. Through a quantitative review, we generated a dataset with 4610 georeferenced Ne estimates from 3829 populations, extracted from 723 articles. These data show that certain taxonomic groups are less likely to meet 50/500 thresholds and are disproportionately impacted by human activities; plant, mammal and amphibian populations had a <54% probability of reaching N ̂ e $$ {\hat{N}}_e $$ = 50 and a <9% probability of reaching N ̂ e $$ {\hat{N}}_e $$ = 500. Populations listed as being of conservation concern according to the IUCN Red List had a smaller median N ̂ e $$ {\hat{N}}_e $$ than unlisted populations, and this was consistent across all taxonomic groups. N ̂ e $$ {\hat{N}}_e $$ was reduced in areas with a greater Global Human Footprint, especially for amphibians, birds and mammals, however relationships varied between taxa. We also highlight several considerations for future works, including the role that gene flow and subpopulation structure plays in the estimation of N ̂ e $$ {\hat{N}}_e $$ in wild populations, and the need for finer-scale taxonomic analyses. Our findings provide guidance for more specific thresholds based on Ne and help prioritise assessment of populations from taxa most at risk of failing to meet conservation thresholds.

4.
Sci Rep ; 14(1): 8088, 2024 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582794

RESUMEN

The Amur tiger is currently confronted with challenges of anthropogenic development, leading to its population becoming fragmented into two geographically isolated groups: smaller and larger ones. Small and isolated populations frequently face a greater extinction risk, yet the small tiger population's genetic status and survival potential have not been assessed. Here, a total of 210 samples of suspected Amur tiger feces were collected from this small population, and the genetic background and population survival potentials were assessed by using 14 microsatellite loci. Our results demonstrated that the mean number of alleles in all loci was 3.7 and expected heterozygosity was 0.6, indicating a comparatively lower level of population genetic diversity compared to previously reported studies on other subspecies. The genetic estimates of effective population size (Ne) and the Ne/N ratio were merely 7.6 and 0.152, respectively, representing lower values in comparison to the Amur tiger population in Sikhote-Alin (the larger group). However, multiple methods have indicated the possibility of genetic divergence within our isolated population under study. Meanwhile, the maximum kinship recorded was 0.441, and the mean inbreeding coefficient stood at 0.0868, both of which are higher than those observed in other endangered species, such as the African lion and the grey wolf. Additionally, we have identified a significant risk of future extinction if the lethal equivalents were to reach 6.26, which is higher than that of other large carnivores. Further, our simulation results indicated that an increase in the number of breeding females would enhance the prospects of this population. In summary, our findings provide a critical theoretical basis for further bailout strategies concerning Amur tigers.


Asunto(s)
Leones , Tigres , Animales , Femenino , Tigres/genética , Especies en Peligro de Extinción , Heterocigoto , Densidad de Población , Repeticiones de Microsatélite/genética , Leones/genética , Conservación de los Recursos Naturales , Variación Genética
5.
Mar Life Sci Technol ; 6(1): 1-14, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38433969

RESUMEN

The electric catfish (Malapterurus electricus), belonging to the family Malapteruridae, order Siluriformes (Actinopterygii: Ostariophysi), is one of the six branches that has independently evolved electrical organs. We assembled a 796.75 Mb M. electricus genome and anchored 88.72% sequences into 28 chromosomes. Gene family analysis revealed 295 expanded gene families that were enriched on functions related to glutamate receptors. Convergent evolutionary analyses of electric organs among different lineage of electric fishes further revealed that the coding gene of rho guanine nucleotide exchange factor 4-like (arhgef4), which is associated with G-protein coupled receptor (GPCR) signaling pathway, underwent adaptive parallel evolution. Gene identification suggests visual degradation in catfishes, and an important role for taste in environmental adaptation. Our findings fill in the genomic data for a branch of electric fish and provide a relevant genetic basis for the adaptive evolution of Siluriformes. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-023-00197-8.

6.
Mol Phylogenet Evol ; 195: 108062, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38485104

RESUMEN

Palaeogeological events and climate oscillations profoundly impact the demographics and distributions of small-range species, increasing the extinction risk. The largest water strider worldwide, Gigantometra gigas (Hemiptera: Gerridae), exhibits restricted distributions in Vietnam and southern China. Herein, we generated three genomic datasets (mitogenomes, 146 nuclear protein-coding genes and single nucleotide polymorphisms) with ecological niche modelling (ENM) to explicitly test whether the present-day distribution of G. gigas actually resulted from geographical and climatic effects. We found that the origin of this largest water strider reached the divergence time of the genus within Gerridae, providing a greater opportunity to explore its response to geographic movements. The right-lateral motion of the Red River Fault facilitated the divergence of two phylogeographic lineages, resulting in the "north-south component" genetic pattern in G. gigas. The Hainan and southeast Vietnam populations of the southern linage were completely separated by the Beibu Gulf but exhibited similar genetic compositions, confirming that Hainan had a continental origin and that Hainan Island joined with the Indo-China Peninsula to promote gene exchange among populations. Additionally, we noticed the low genetic diversity but long demographic history of the northern lineage, which displayed population dynamics opposite to those of other organisms. Integrating the demographic changes and ENM findings revealed that suitable habitat contraction and rapid demographic decline during the Last Glacial Maximum (LGM) triggered the low genetic diversity of the northern lineage. Overall, the demographic history of the largest water strider was mainly shaped by geographical features, and first provided evidence from the phylogeographic perspective of aquatic insects to support the hypothesis of Hainan Island shifting.


Asunto(s)
Ríos , Agua , Filogeografía , Filogenia , China , Variación Genética , ADN Mitocondrial/genética
7.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38482769

RESUMEN

Background selection describes the reduction in neutral diversity caused by selection against deleterious alleles at other loci. It is typically assumed that the purging of deleterious alleles affects linked neutral variants, and indeed simulations typically only treat a genomic window. However, background selection at unlinked loci also depresses neutral diversity. In agreement with previous analytical approximations, in our simulations of a human-like genome with a realistically high genome-wide deleterious mutation rate, the effects of unlinked background selection exceed those of linked background selection. Background selection reduces neutral genetic diversity by a factor that is independent of census population size. Outside of genic regions, the strength of background selection increases with the mean selection coefficient, contradicting the linked theory but in agreement with the unlinked theory. Neutral diversity within genic regions is fairly independent of the strength of selection. Deleterious genetic load among haploid individuals is underdispersed, indicating nonindependent evolution of deleterious mutations. Empirical evidence for underdispersion was previously interpreted as evidence for global epistasis, but we recover it from a non-epistatic model.


Asunto(s)
Variación Genética , Selección Genética , Humanos , Mutación , Genoma Humano , Alelos , Modelos Genéticos
8.
Mol Ecol ; 33(7): e17311, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38468155

RESUMEN

Urbanisation is occurring globally, leading to dramatic environmental changes that are altering the ecology and evolution of species. In particular, the expansion of human infrastructure and the loss and fragmentation of natural habitats in cities is predicted to increase genetic drift and reduce gene flow by reducing the size and connectivity of populations. Alternatively, the 'urban facilitation model' suggests that some species will have greater gene flow into and within cities leading to higher diversity and lower differentiation in urban populations. These alternative hypotheses have not been contrasted across multiple cities. Here, we used the genomic data from the GLobal Urban Evolution project (GLUE), to study the effects of urbanisation on non-adaptive evolutionary processes of white clover (Trifolium repens) at a global scale. We found that white clover populations presented high genetic diversity and no evidence of reduced Ne linked to urbanisation. On the contrary, we found that urban populations were less likely to experience a recent decrease in effective population size than rural ones. In addition, we found little genetic structure among populations both globally and between urban and rural populations, which showed extensive gene flow between habitats. Interestingly, white clover displayed overall higher gene flow within urban areas than within rural habitats. Our study provides the largest comprehensive test of the demographic effects of urbanisation. Our results contrast with the common perception that heavily altered and fragmented urban environments will reduce the effective population size and genetic diversity of populations and contribute to their isolation.


Asunto(s)
Flujo Genético , Urbanización , Humanos , Ciudades , Ecosistema , Demografía
9.
Ecol Evol ; 14(3): e11102, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38524913

RESUMEN

Genetics is a fast-moving field, and for conservation practitioners or ecologists, it can be bewildering. The choice of marker used in studies is fundamental; in the literature, preference has recently shifted from microsatellites to single nucleotide polymorphism (SNP) loci. Understanding how marker type affects estimates of population genetic parameters is important in the context of conservation, especially because the accuracy of estimates has a bearing on the actions taken to protect threatened species. We compare parameter estimates between seven microsatellites, 3761 SNP loci, and a random subset of 100 SNPs for the exact same 324 individual swift parrots, Lathamus discolor, and also use 457 additional samples from subsequent years to compare SNP estimates. Both marker types estimated a lower H O than H E. We show that microsatellites and SNPs mainly indicate a lack of spatial genetic structure, except when a priori collection locations were used on the SNP data in a discriminant analysis of principal components (DAPC). The 100-SNP subset gave comparable results to when the full dataset was used. Estimates of effective population size (N e) were comparable between markers when the same individuals were considered, but SNPs had narrower confidence intervals. This is reassuring because conservation assessments that rely on population genetic estimates based on a few microsatellites are unlikely to be nullified by the general shift toward SNPs in the literature. However, estimates between markers and datasets varied considerably when only adult samples were considered; hence, including samples of all age groups is recommended to be used when available. The estimated N e was higher for the full SNP dataset (2010-2019) than the smaller comparison data (2010-2015), which might be a better reflection of the species status. The lower precision of microsatellites may not necessarily be a barrier for most conservation applications; however, SNPs will improve confidence limits, which may be useful for practitioners.

10.
Genome Biol Evol ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526062

RESUMEN

Intrinsic rates of genetic mutation have diverged greatly across taxa and exhibit statistical associations with several other parameters and features. These include effective population size (Ne), genome size, and gametic multicellularity, with the latter being associated with both increased mutation rates and decreased effective population sizes. However, data sufficient to test for possible relationships between microbial multicellularity and mutation rate (µ) are lacking. Here we report estimates of two key population-genetic parameters, Ne and µ, for Myxococcus xanthus, a bacterial model organism for the study of aggregative multicellular development, predation, and social swarming. To estimate µ, we conducted an ∼400-day mutation-accumulation (MA) experiment with 46 lineages subjected to regular single colony bottlenecks prior to clonal regrowth. Upon conclusion, we sequenced one clonal-isolate genome per lineage. Given collective evolution for 85,323 generations across all lines, we calculate a per base-pair mutation rate of ∼5.5 × 10-10 per site per generation, one of the highest mutation rates among free-living eubacteria. Given our estimate of µ, we derived Ne at ∼107 from neutral diversity at four-fold degenerate sites across two dozen M. xanthus natural isolates. This estimate is below average for eubacteria and strengthens an already clear negative correlation between µ and Ne in prokaryotes. The higher and lower than average mutation rate and Ne for M. xanthus, respectively, amplify the question of whether any features of its multicellular life-cycle - such as group-size reduction during fruiting-body development - or its highly structured spatial distribution have significantly influenced how these parameters have evolved.

11.
J Evol Biol ; 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38306450

RESUMEN

Insular biodiversity hotspots of Southeast Asia are remarkable for their biodiverse faunas. With a marine larval phase lasting up to several months, the freshwater fish subfamily Sicydiinae has colonized most islands of these hotspots. However, Sicydiinae diversity is still poorly understood in Southeast Asia. With the objective to estimate intraspecific genetic diversity and infer past demography, we conducted the molecular inventory of Sicydiinae species in Sundaland and Wallacea using 652 bp of the mitochondrial cytochrome oxidase I gene, species delimitation methods and Bayesian Skyline plot reconstructions. In total, 24 Molecular Operational Taxonomic Units are delimited among the 603 sequences belonging to 27 species and five genera. Two cases of discordance between morphology and mitochondrial sequence are observed suggesting ongoing speciation and/or introgression in two genera. Multiple new occurrences are reported, either for a single biodiversity hotspot or both, some of which corresponding to observations of a few individuals far from the range distribution of their conspecifics. Among the ten species or species group whose intraspecific diversity was examined, high levels of genetic diversity and past population expansion are revealed by Tajima's D tests and Bayesian Skyline Plot reconstructions. Together these results indicate that long-distance dispersal is common and suggest that most endemic species originated through founder events followed by population expansion. Patterns of sexual dimorphism and males' coloration among diverging species pair seem to point to sexual selection as an important mechanism contributing to speciation in the Sicydiinae of Sundaland and Wallacea.

12.
Insect Sci ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297451

RESUMEN

Bumblebees are a genus of pollinators (Bombus) that play important roles in natural ecosystem and agricultural production. Several bumblebee species have been recorded as under population decline, and the proportion of species experiencing population decline within subgenus Thoracobombus is higher than average. Bombus opulentus is 1 species in Thoracobombus, but little is known about its recent population dynamics. Here, we employed conservation genomics methods to investigate the population dynamics of B. opulentus during the recent past and identify the likely environmental factors that may cause population decline. Firstly, we placed the scaffold-level of B. opulentus reference genome sequence onto chromosome-level using Hi-C technique. Then, based on this reference genome and whole-genome resequencing data for 51 B. opulentus samples, we reconstructed the population structure and effective population size (Ne ) trajectories of B. opulentus and identified genes that were under positive selection. Our results revealed that the collected B. opulentus samples could be divided into 2 populations, and 1 of them experienced a recent population decline; the declining population also exhibited lower genetic diversity and higher inbreeding levels. Genes related to high-temperature tolerance, immune response, and detoxication showed signals of positive selection in the declining population, suggesting that climate warming and pathogen/pesticide exposures may contribute to the decline of this B. opulentus population. Taken together, our study provided insights into the demography of B. opulentus populations and highlighted that populations of the same bumblebee species could have contrasting Ne trajectories and population decline could be caused by a combination of various stressors.

13.
Evol Appl ; 17(2): e13607, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38343782

RESUMEN

By the 1980s, after decades of declining numbers in the mid-1900s, Coho salmon (Oncorhynchus kisutch) were considered extirpated from the interior Columbia River. In the mid-1990s, the Confederated Tribes of the Umatilla Indian Reservation, the Confederated Tribes and Bands of the Yakama Nation, and the Nez Perce Tribe began successful reintroduction programs of Coho salmon upstream of Bonneville Dam, but which were initially sourced from lower Columbia River hatcheries. Here we present the first Coho salmon parentage-based tagging (PBT) baseline from seven hatchery programs located in the interior Columbia River basin, and two sites at or downstream of Bonneville Dam, composed of over 32,000 broodstock samples. Analyses of baseline collections revealed that genetic structure followed a temporal pattern based on 3-year broodlines rather than geographic location or stocking history. Across hatchery programs, similar levels of genetic diversity was present. The PBT baseline provided multiple direct applications such as identification of origin for Coho salmon collected in a mixed stock at Priest Rapids Dam and the detection of the proportion and distribution of hatchery-origin fish on the spawning grounds in the Methow River basin. The PBT baseline for Coho salmon is freely available for use and can be downloaded from FishGen.net.

14.
Sci Total Environ ; 919: 170808, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38336046

RESUMEN

Catastrophic fish death events are increasing in frequency and severity globally. A series of major recent fish deaths in the semi-arid lower Darling-Baaka river system (LDBR) of Australia are emblematic of these issues with tens of millions of native fish perishing. In 2018-2019 there was a major death event for Australia's largest freshwater fish, Murray cod (Maccullochella peelii). To aid the recovery and guide restoration activities of local Murray cod populations, it is essential to gather information on the mating strategies and effective population size following the fish death event. After the fish deaths, we collected larvae during the 2020 and 2021 breeding seasons and used single nucleotide polymorphisms (SNPs) to provide insight mating strategies and to estimate effective population size. Larvae were detected in both years along the entire length of the LDBR. Sixteen percent of the inferred breeding individuals were found to contribute to multiple pairings, confirming a complex and polygamous mating system. A high frequency of polygamy was evident both within and between years with 100 % polygamy identified among parents that produced offspring in both 2020 and 2021 and 95 % polygamy identified among parents involved in multiple spawning events within years. Post-larval Murray cod samples collected between 2016 and 2021 were co-analysed to further inform kinship patterns. Again, monogamy was rare with no confirmed cases of the same male-female pair contributing to multiple breeding events within or between seasons. Effective population size based on Murray cod collected after the fish death event was estimated at 721.6 (CI 471-1486), though this has likely declined following a subsequent catastrophic fish death event in the LDBR in March 2023. Our data provide insight into the variability of Murray cod mating strategies, and we anticipate that this knowledge will assist in planning conservation actions to ultimately help recover a species in crisis.


Asunto(s)
Matrimonio , Perciformes , Animales , Femenino , Masculino , Peces , Perciformes/genética , Agua Dulce , Australia
15.
Gene ; 901: 148178, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38242377

RESUMEN

The Sahiwal cattle breed is the best indigenous dairy cattle breed, and it plays a pivotal role in the Indian dairy industry. This is due to its exceptional milk-producing potential, adaptability to local tropical conditions, and its resilience to ticks and diseases. The study aimed to identify selective sweeps and estimate intrapopulation genetic diversity parameters in Sahiwal cattle using ddRAD sequencing-based genotyping data from 82 individuals. After applying filtering criteria, 78,193 high-quality SNPs remained for further analysis. The population exhibited an average minor allele frequency of 0.221 ± 0.119. Genetic diversity metrics, including observed (0.597 ± 0.196) and expected heterozygosity (0.433 ± 0.096), nucleotide diversity (0.327 ± 0.114), the proportion of polymorphic SNPs (0.726), and allelic richness (1.323 ± 0.134), indicated ample genomic diversity within the breed. Furthermore, an effective population size of 74 was observed in the most recent generation. The overall mean linkage disequilibrium (r2) for pairwise SNPs was 0.269 ± 0.057. Moreover, a greater proportion of short Runs of Homozygosity (ROH) segments were observed suggesting that there may be low levels of recent inbreeding in this population. The genomic inbreeding coefficients, computed using different inbreeding estimates (FHOM, FUNI, FROH, and FGROM), ranged from -0.0289 to 0.0725. Subsequently, we found 146 regions undergoing selective sweeps using five distinct statistical tests: Tajima's D, CLR, |iHS|, |iHH12|, and ROH. These regions, located in non-overlapping 500 kb windows, were mapped and revealed various protein-coding genes associated with enhanced immune systems and disease resistance (IFNL3, IRF8, BLK), as well as production traits (NRXN1, PLCE1, GHR). Notably, we identified interleukin 2 (IL2) on Chr17: 35217075-35223276 as a gene linked to tick resistance and uncovered a cluster of genes (HSPA8, UBASH3B, ADAMTS18, CRTAM) associated with heat stress. These findings indicate the evolutionary impact of natural and artificial selection on the environmental adaptation of the Sahiwal cattle population.


Asunto(s)
Genómica , Endogamia , Humanos , Animales , Bovinos/genética , Homocigoto , Cruzamiento , Alelos , Polimorfismo de Nucleótido Simple , Genotipo , Proteínas ADAMTS/genética
16.
Mol Ecol ; 33(3): e17231, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38054561

RESUMEN

Effective population size estimates are critical information needed for evolutionary predictions and conservation decisions. This is particularly true for species with social factors that restrict access to breeding or experience repeated fluctuations in population size across generations. We investigated the genomic estimates of effective population size along with diversity, subdivision, and inbreeding from 162,109 minimally filtered and 81,595 statistically neutral and unlinked SNPs genotyped in 437 grey wolf samples from North America collected between 1986 and 2021. We found genetic structure across North America, represented by three distinct demographic histories of western, central, and eastern regions of the continent. Further, grey wolves in the northern Rocky Mountains have lower genomic diversity than wolves of the western Great Lakes and have declined over time. Effective population size estimates revealed the historical signatures of continental efforts of predator extermination, despite a quarter century of recovery efforts. We are the first to provide molecular estimates of effective population size across distinct grey wolf populations in North America, which ranged between Ne ~ 275 and 3050 since early 1980s. We provide data that inform managers regarding the status and importance of effective population size estimates for grey wolf conservation, which are on average 5.2-9.3% of census estimates for this species. We show that while grey wolves fall above minimum effective population sizes needed to avoid extinction due to inbreeding depression in the short term, they are below sizes predicted to be necessary to avoid long-term risk of extinction.


Asunto(s)
Lobos , Animales , Lobos/genética , Genética de Población , Genómica , Densidad de Población , América del Norte
18.
J Anim Breed Genet ; 141(3): 304-316, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38108572

RESUMEN

The Katahdin hair breed gained popularity in the United States as low input and prolific, with a propensity to exhibit parasite resistance. With the introduction of genomically enhanced estimated breeding values (GEBV) to the Katahdin genetic evaluation, defining the diversity present in the breed is pertinent. Utilizing pedigree records (n = 92,030) from 1984 to 2019 from the National Sheep Improvement Program, our objectives were to (i) estimate the completeness and quality of the pedigree, (ii) calculate diversity statistics for the whole pedigree and relevant reference subpopulations and (iii) assess the impact of current diversity on genomic selection. Reference 1 was Katahdins born from 2017 to 2019 (n = 23,494), while reference 2 was a subset with at least three generations of Katahdin ancestry (n = 9327). The completeness of the whole pedigree, and the pedigrees of reference 1 and reference 2, were above 50% through the fourth, fifth and seventh generation of ancestors, respectively. Effective population size (Ne) averaged 111 animals with a range from 42.2 to 451.0. The average generation interval was 2.9 years for the whole pedigree and reference 1, and 2.8 years for reference 2. The mean individual inbreeding and average relatedness coefficients were 1.62% and 0.91%, 1.74% and 0.90% and 2.94% and 1.46% for the whole pedigree, reference 1, and reference 2, respectively. There were over 300 effective founders in the whole pedigree and reference 1, with 169 in reference 2. Effective number of ancestors were over 150 for the whole pedigree and reference 1, while there were 67 for reference 2. Prediction accuracies increased as the reference population grew from 1k to 7.5k and plateaued at 15k animals. Given the large number of founders and ancestors contributing to the base genetic variation in the breed, the Ne is sufficient to maintain diversity while achieving progress with selection. Stable low rates of inbreeding and relatedness suggest that incorporating genetic conservation in breeding decisions is currently not of high priority. Current Ne suggests that with limited genotyping, high levels of accuracy for genomic prediction can be achieved. However, intense selection on GEBV may cause loss of genetic diversity long term.


Asunto(s)
Variación Genética , Endogamia , Ovinos/genética , Animales , Linaje , Densidad de Población , Selección Genética
19.
Mol Ecol ; 33(4): e17243, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38108507

RESUMEN

Disentangling the effects of ecological disruptions operating at different spatial and temporal scales in shaping past species' demography is particularly important in the current context of rapid environmental changes driven by both local and regional factors. We argue that volcanic oceanic islands provide useful settings to study the influence of past ecological disruptions operating at local and regional scales on population demographic histories. We investigate potential drivers of past population dynamics for three closely related species of passerine birds from two volcanic oceanic islands, Reunion and Mauritius (Mascarene archipelago), with distinct volcanic history. Using ABC and PSMC inferences from complete genomes, we reconstructed the demographic history of the Reunion Grey White-eye (Zosterops borbonicus (Pennant, 1781)), the Reunion Olive White-eye (Z. olivaceus (Linnaeus, 1766)) and the Mauritius Grey White-eye (Z. mauritianus (Gmelin, 1789)) and searched for possible causes underlying similarities or differences between species living on the same or different islands. Both demographic inferences strongly support ancient and long-term expansions in all species. They also reveal different trajectories between species inhabiting different islands, but consistent demographic trajectories in species or populations from the same island. Species from Reunion appear to have experienced synchronous reductions in population size during the Last Glacial Maximum, a trend not seen in the Mauritian species. Overall, this study suggests that local events may have played a role in shaping population trajectories of these island species. It also highlights the potential of our conceptual framework to disentangle the effects of local and regional drivers on past species' demography and long-term population processes.


Asunto(s)
Dinámica Poblacional , Océanos y Mares , Reunión , Mauricio
20.
Mol Ecol Resour ; 24(1): e13879, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37873672

RESUMEN

The method to estimate contemporary effective population size (Ne ) based on patterns of linkage disequilibrium (LD) at unlinked loci has been widely applied to natural and managed populations. The underlying model makes many simplifying assumptions, most of which have been evaluated in numerous studies published over the last two decades. Here, these performance evaluations are reviewed and summarized, with a focus on information that facilitates practical application to real populations in nature. Potential sources of bias that are discussed include calculation of r2 (a measure of LD), adjustments for sampling error, physical linkage, age structure, migration and spatial structure, mutation and selection, mating systems, changes in abundance, rare alleles, missing data, genotyping errors, data filtering choices and methods for combining multiple Ne estimates. Factors that affect precision are reviewed, including pseudoreplication that limits the information gained from large genomics datasets, constraints imposed by small samples of individuals, and the challenges in obtaining robust estimates for large populations. Topics that merit further research include the potential to weight r2 values by allele frequency, lump samples of individuals, use genotypic likelihoods rather than called genotypes, prune large LD values and apply the method to species practising partial monogamy.


Asunto(s)
Genética de Población , Modelos Genéticos , Humanos , Desequilibrio de Ligamiento , Densidad de Población , Frecuencia de los Genes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...